Adaptive Subgradient Methods for Online AUC Maximization

نویسندگان

  • Yi Ding
  • Peilin Zhao
  • Steven C. H. Hoi
  • Yew-Soon Ong
چکیده

Learning for maximizing AUC performance is an important research problem in Machine Learning and Artificial Intelligence. Unlike traditional batch learning methods for maximizing AUC which often suffer from poor scalability, recent years have witnessed some emerging studies that attempt to maximize AUC by single-pass online learning approaches. Despite their encouraging results reported, the existing online AUC maximization algorithms often adopt simple online gradient descent approaches that fail to exploit the geometrical knowledge of the data observed during the online learning process, and thus could suffer from relatively larger regret. To address the above limitation, in this work, we explore a novel algorithm of Adaptive Online AUC Maximization (AdaOAM) which employs an adaptive gradient method that exploits the knowledge of historical gradients to perform more informative online learning. The new adaptive updating strategy of the AdaOAM is less sensitive to the parameter settings and maintains the same time complexity as previous non-adaptive counterparts. Additionally, we extend the algorithm to handle high-dimensional sparse data (SAdaOAM) and address sparsity in the solution by performing lazy gradient updating. We analyze the theoretical bounds and evaluate their empirical performance on various types of data sets. The encouraging empirical results obtained clearly highlighted the effectiveness and efficiency of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Gradient Method for Online AUC Maximization

Learning for maximizing AUC performance is an important research problem in machine learning. Unlike traditional batch learning methods for maximizing AUC which often suffer from poor scalability, recent years have witnessed some emerging studies that attempt to maximize AUC by single-pass online learning approaches. Despite their encouraging results reported, the existing online AUC maximizati...

متن کامل

Adaptive Subgradient Methods Adaptive Subgradient Methods for Online Learning and Stochastic Optimization

We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradientbased learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent advances in stochastic optimization and on...

متن کامل

Confidence-Weighted Bipartite Ranking

Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning...

متن کامل

Stochastic Online AUC Maximization

Area under ROC (AUC) is a metric which is widely used for measuring the classification performance for imbalanced data. It is of theoretical and practical interest to develop online learning algorithms that maximizes AUC for large-scale data. A specific challenge in developing online AUC maximization algorithm is that the learning objective function is usually defined over a pair of training ex...

متن کامل

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization

We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradientbased learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent advances in stochastic optimization and on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.00351  شماره 

صفحات  -

تاریخ انتشار 2016